1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Distribution trait and associates

use crate::Rng;
use core::iter;
#[cfg(feature = "alloc")]
use alloc::string::String;

/// Types (distributions) that can be used to create a random instance of `T`.
///
/// It is possible to sample from a distribution through both the
/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and
/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which
/// produces an iterator that samples from the distribution.
///
/// All implementations are expected to be immutable; this has the significant
/// advantage of not needing to consider thread safety, and for most
/// distributions efficient state-less sampling algorithms are available.
///
/// Implementations are typically expected to be portable with reproducible
/// results when used with a PRNG with fixed seed; see the
/// [portability chapter](https://rust-random.github.io/book/portability.html)
/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize`
/// type requires different sampling on 32-bit and 64-bit machines.
///
/// [`sample_iter`]: Distribution::sample_iter
pub trait Distribution<T> {
    /// Generate a random value of `T`, using `rng` as the source of randomness.
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;

    /// Create an iterator that generates random values of `T`, using `rng` as
    /// the source of randomness.
    ///
    /// Note that this function takes `self` by value. This works since
    /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`,
    /// however borrowing is not automatic hence `distr.sample_iter(...)` may
    /// need to be replaced with `(&distr).sample_iter(...)` to borrow or
    /// `(&*distr).sample_iter(...)` to reborrow an existing reference.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::thread_rng;
    /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard};
    ///
    /// let mut rng = thread_rng();
    ///
    /// // Vec of 16 x f32:
    /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect();
    ///
    /// // String:
    /// let s: String = Alphanumeric
    ///     .sample_iter(&mut rng)
    ///     .take(7)
    ///     .map(char::from)
    ///     .collect();
    ///
    /// // Dice-rolling:
    /// let die_range = Uniform::new_inclusive(1, 6);
    /// let mut roll_die = die_range.sample_iter(&mut rng);
    /// while roll_die.next().unwrap() != 6 {
    ///     println!("Not a 6; rolling again!");
    /// }
    /// ```
    fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
    where
        R: Rng,
        Self: Sized,
    {
        DistIter {
            distr: self,
            rng,
            phantom: ::core::marker::PhantomData,
        }
    }

    /// Create a distribution of values of 'S' by mapping the output of `Self`
    /// through the closure `F`
    ///
    /// # Example
    ///
    /// ```
    /// use rand::thread_rng;
    /// use rand::distributions::{Distribution, Uniform};
    ///
    /// let mut rng = thread_rng();
    ///
    /// let die = Uniform::new_inclusive(1, 6);
    /// let even_number = die.map(|num| num % 2 == 0);
    /// while !even_number.sample(&mut rng) {
    ///     println!("Still odd; rolling again!");
    /// }
    /// ```
    fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>
    where
        F: Fn(T) -> S,
        Self: Sized,
    {
        DistMap {
            distr: self,
            func,
            phantom: ::core::marker::PhantomData,
        }
    }
}

impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
        (*self).sample(rng)
    }
}

/// An iterator that generates random values of `T` with distribution `D`,
/// using `R` as the source of randomness.
///
/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
/// See its documentation for more.
///
/// [`sample_iter`]: Distribution::sample_iter
#[derive(Debug)]
pub struct DistIter<D, R, T> {
    distr: D,
    rng: R,
    phantom: ::core::marker::PhantomData<T>,
}

impl<D, R, T> Iterator for DistIter<D, R, T>
where
    D: Distribution<T>,
    R: Rng,
{
    type Item = T;

    #[inline(always)]
    fn next(&mut self) -> Option<T> {
        // Here, self.rng may be a reference, but we must take &mut anyway.
        // Even if sample could take an R: Rng by value, we would need to do this
        // since Rng is not copyable and we cannot enforce that this is "reborrowable".
        Some(self.distr.sample(&mut self.rng))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (usize::max_value(), None)
    }
}

impl<D, R, T> iter::FusedIterator for DistIter<D, R, T>
where
    D: Distribution<T>,
    R: Rng,
{
}

#[cfg(features = "nightly")]
impl<D, R, T> iter::TrustedLen for DistIter<D, R, T>
where
    D: Distribution<T>,
    R: Rng,
{
}

/// A distribution of values of type `S` derived from the distribution `D`
/// by mapping its output of type `T` through the closure `F`.
///
/// This `struct` is created by the [`Distribution::map`] method.
/// See its documentation for more.
#[derive(Debug)]
pub struct DistMap<D, F, T, S> {
    distr: D,
    func: F,
    phantom: ::core::marker::PhantomData<fn(T) -> S>,
}

impl<D, F, T, S> Distribution<S> for DistMap<D, F, T, S>
where
    D: Distribution<T>,
    F: Fn(T) -> S,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> S {
        (self.func)(self.distr.sample(rng))
    }
}

/// `String` sampler
///
/// Sampling a `String` of random characters is not quite the same as collecting
/// a sequence of chars. This trait contains some helpers.
#[cfg(feature = "alloc")]
pub trait DistString {
    /// Append `len` random chars to `string`
    fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize);

    /// Generate a `String` of `len` random chars
    #[inline]
    fn sample_string<R: Rng + ?Sized>(&self, rng: &mut R, len: usize) -> String {
        let mut s = String::new();
        self.append_string(rng, &mut s, len);
        s
    }
}

#[cfg(test)]
mod tests {
    use crate::distributions::{Alphanumeric, Distribution, Standard, Uniform};
    use crate::Rng;

    #[test]
    fn test_distributions_iter() {
        use crate::distributions::Open01;
        let mut rng = crate::test::rng(210);
        let distr = Open01;
        let mut iter = Distribution::<f32>::sample_iter(distr, &mut rng);
        let mut sum: f32 = 0.;
        for _ in 0..100 {
            sum += iter.next().unwrap();
        }
        assert!(0. < sum && sum < 100.);
    }

    #[test]
    fn test_distributions_map() {
        let dist = Uniform::new_inclusive(0, 5).map(|val| val + 15);

        let mut rng = crate::test::rng(212);
        let val = dist.sample(&mut rng);
        assert!(val >= 15 && val <= 20);
    }

    #[test]
    fn test_make_an_iter() {
        fn ten_dice_rolls_other_than_five<R: Rng>(
            rng: &mut R,
        ) -> impl Iterator<Item = i32> + '_ {
            Uniform::new_inclusive(1, 6)
                .sample_iter(rng)
                .filter(|x| *x != 5)
                .take(10)
        }

        let mut rng = crate::test::rng(211);
        let mut count = 0;
        for val in ten_dice_rolls_other_than_five(&mut rng) {
            assert!((1..=6).contains(&val) && val != 5);
            count += 1;
        }
        assert_eq!(count, 10);
    }

    #[test]
    #[cfg(feature = "alloc")]
    fn test_dist_string() {
        use core::str;
        use crate::distributions::DistString;
        let mut rng = crate::test::rng(213);

        let s1 = Alphanumeric.sample_string(&mut rng, 20);
        assert_eq!(s1.len(), 20);
        assert_eq!(str::from_utf8(s1.as_bytes()), Ok(s1.as_str()));

        let s2 = Standard.sample_string(&mut rng, 20);
        assert_eq!(s2.chars().count(), 20);
        assert_eq!(str::from_utf8(s2.as_bytes()), Ok(s2.as_str()));
    }
}