1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Verification of RSA signatures.

use super::{parse_public_key, RsaParameters, N, PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN};
use crate::{
    arithmetic::{bigint, montgomery::Unencoded},
    bits, cpu, digest, error,
    limb::LIMB_BYTES,
    sealed, signature,
};

#[derive(Debug)]
pub struct Key {
    pub n: bigint::Modulus<N>,
    pub e: bigint::PublicExponent,
    pub n_bits: bits::BitLength,
}

impl Key {
    pub fn from_modulus_and_exponent(
        n: untrusted::Input,
        e: untrusted::Input,
        n_min_bits: bits::BitLength,
        n_max_bits: bits::BitLength,
        e_min_value: u64,
    ) -> Result<Self, error::KeyRejected> {
        // This is an incomplete implementation of NIST SP800-56Br1 Section
        // 6.4.2.2, "Partial Public-Key Validation for RSA." That spec defers
        // to NIST SP800-89 Section 5.3.3, "(Explicit) Partial Public Key
        // Validation for RSA," "with the caveat that the length of the modulus
        // shall be a length that is specified in this Recommendation." In
        // SP800-89, two different sets of steps are given, one set numbered,
        // and one set lettered. TODO: Document this in the end-user
        // documentation for RSA keys.

        // Step 3 / Step c for `n` (out of order).
        let (n, n_bits) = bigint::Modulus::from_be_bytes_with_bit_length(n)?;

        // `pkcs1_encode` depends on this not being small. Otherwise,
        // `pkcs1_encode` would generate padding that is invalid (too few 0xFF
        // bytes) for very small keys.
        const N_MIN_BITS: bits::BitLength = bits::BitLength::from_usize_bits(1024);

        // Step 1 / Step a. XXX: SP800-56Br1 and SP800-89 require the length of
        // the public modulus to be exactly 2048 or 3072 bits, but we are more
        // flexible to be compatible with other commonly-used crypto libraries.
        assert!(n_min_bits >= N_MIN_BITS);
        let n_bits_rounded_up =
            bits::BitLength::from_usize_bytes(n_bits.as_usize_bytes_rounded_up())
                .map_err(|error::Unspecified| error::KeyRejected::unexpected_error())?;
        if n_bits_rounded_up < n_min_bits {
            return Err(error::KeyRejected::too_small());
        }
        if n_bits > n_max_bits {
            return Err(error::KeyRejected::too_large());
        }

        // Step 2 / Step b.
        // Step 3 / Step c for `e`.
        let e = bigint::PublicExponent::from_be_bytes(e, e_min_value)?;

        // If `n` is less than `e` then somebody has probably accidentally swapped
        // them. The largest acceptable `e` is smaller than the smallest acceptable
        // `n`, so no additional checks need to be done.

        // XXX: Steps 4 & 5 / Steps d, e, & f are not implemented. This is also the
        // case in most other commonly-used crypto libraries.

        Ok(Self { n, e, n_bits })
    }
}

impl signature::VerificationAlgorithm for RsaParameters {
    fn verify(
        &self,
        public_key: untrusted::Input,
        msg: untrusted::Input,
        signature: untrusted::Input,
    ) -> Result<(), error::Unspecified> {
        let (n, e) = parse_public_key(public_key)?;
        verify_rsa_(
            self,
            (
                n.big_endian_without_leading_zero_as_input(),
                e.big_endian_without_leading_zero_as_input(),
            ),
            msg,
            signature,
        )
    }
}

impl sealed::Sealed for RsaParameters {}

macro_rules! rsa_params {
    ( $VERIFY_ALGORITHM:ident, $min_bits:expr, $PADDING_ALGORITHM:expr,
      $doc_str:expr ) => {
        #[doc=$doc_str]
        ///
        /// Only available in `alloc` mode.
        pub static $VERIFY_ALGORITHM: RsaParameters = RsaParameters {
            padding_alg: $PADDING_ALGORITHM,
            min_bits: bits::BitLength::from_usize_bits($min_bits),
        };
    };
}

rsa_params!(
    RSA_PKCS1_1024_8192_SHA1_FOR_LEGACY_USE_ONLY,
    1024,
    &super::padding::RSA_PKCS1_SHA1_FOR_LEGACY_USE_ONLY,
    "Verification of signatures using RSA keys of 1024-8192 bits,
             PKCS#1.5 padding, and SHA-1.\n\nSee \"`RSA_PKCS1_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);
rsa_params!(
    RSA_PKCS1_2048_8192_SHA1_FOR_LEGACY_USE_ONLY,
    2048,
    &super::padding::RSA_PKCS1_SHA1_FOR_LEGACY_USE_ONLY,
    "Verification of signatures using RSA keys of 2048-8192 bits,
             PKCS#1.5 padding, and SHA-1.\n\nSee \"`RSA_PKCS1_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);
rsa_params!(
    RSA_PKCS1_1024_8192_SHA256_FOR_LEGACY_USE_ONLY,
    1024,
    &super::RSA_PKCS1_SHA256,
    "Verification of signatures using RSA keys of 1024-8192 bits,
             PKCS#1.5 padding, and SHA-256.\n\nSee \"`RSA_PKCS1_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);
rsa_params!(
    RSA_PKCS1_2048_8192_SHA256,
    2048,
    &super::RSA_PKCS1_SHA256,
    "Verification of signatures using RSA keys of 2048-8192 bits,
             PKCS#1.5 padding, and SHA-256.\n\nSee \"`RSA_PKCS1_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);
rsa_params!(
    RSA_PKCS1_2048_8192_SHA384,
    2048,
    &super::RSA_PKCS1_SHA384,
    "Verification of signatures using RSA keys of 2048-8192 bits,
             PKCS#1.5 padding, and SHA-384.\n\nSee \"`RSA_PKCS1_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);
rsa_params!(
    RSA_PKCS1_2048_8192_SHA512,
    2048,
    &super::RSA_PKCS1_SHA512,
    "Verification of signatures using RSA keys of 2048-8192 bits,
             PKCS#1.5 padding, and SHA-512.\n\nSee \"`RSA_PKCS1_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);
rsa_params!(
    RSA_PKCS1_1024_8192_SHA512_FOR_LEGACY_USE_ONLY,
    1024,
    &super::RSA_PKCS1_SHA512,
    "Verification of signatures using RSA keys of 1024-8192 bits,
             PKCS#1.5 padding, and SHA-512.\n\nSee \"`RSA_PKCS1_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);
rsa_params!(
    RSA_PKCS1_3072_8192_SHA384,
    3072,
    &super::RSA_PKCS1_SHA384,
    "Verification of signatures using RSA keys of 3072-8192 bits,
             PKCS#1.5 padding, and SHA-384.\n\nSee \"`RSA_PKCS1_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);

rsa_params!(
    RSA_PSS_2048_8192_SHA256,
    2048,
    &super::RSA_PSS_SHA256,
    "Verification of signatures using RSA keys of 2048-8192 bits,
             PSS padding, and SHA-256.\n\nSee \"`RSA_PSS_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);
rsa_params!(
    RSA_PSS_2048_8192_SHA384,
    2048,
    &super::RSA_PSS_SHA384,
    "Verification of signatures using RSA keys of 2048-8192 bits,
             PSS padding, and SHA-384.\n\nSee \"`RSA_PSS_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);
rsa_params!(
    RSA_PSS_2048_8192_SHA512,
    2048,
    &super::RSA_PSS_SHA512,
    "Verification of signatures using RSA keys of 2048-8192 bits,
             PSS padding, and SHA-512.\n\nSee \"`RSA_PSS_*` Details\" in
             `ring::signature`'s module-level documentation for more details."
);

/// Low-level API for the verification of RSA signatures.
///
/// When the public key is in DER-encoded PKCS#1 ASN.1 format, it is
/// recommended to use `ring::signature::verify()` with
/// `ring::signature::RSA_PKCS1_*`, because `ring::signature::verify()`
/// will handle the parsing in that case. Otherwise, this function can be used
/// to pass in the raw bytes for the public key components as
/// `untrusted::Input` arguments.
//
// There are a small number of tests that test this directly, but the
// test coverage for this function mostly depends on the test coverage for the
// `signature::VerificationAlgorithm` implementation for `RsaParameters`. If we
// change that, test coverage for `verify_rsa()` will need to be reconsidered.
// (The NIST test vectors were originally in a form that was optimized for
// testing `verify_rsa` directly, but the testing work for RSA PKCS#1
// verification was done during the implementation of
// `signature::VerificationAlgorithm`, before `verify_rsa` was factored out).
#[derive(Debug)]
pub struct RsaPublicKeyComponents<B: AsRef<[u8]> + core::fmt::Debug> {
    /// The public modulus, encoded in big-endian bytes without leading zeros.
    pub n: B,

    /// The public exponent, encoded in big-endian bytes without leading zeros.
    pub e: B,
}

impl<B: Copy> Copy for RsaPublicKeyComponents<B> where B: AsRef<[u8]> + core::fmt::Debug {}

impl<B: Clone> Clone for RsaPublicKeyComponents<B>
where
    B: AsRef<[u8]> + core::fmt::Debug,
{
    fn clone(&self) -> Self {
        Self {
            n: self.n.clone(),
            e: self.e.clone(),
        }
    }
}

impl<B> RsaPublicKeyComponents<B>
where
    B: AsRef<[u8]> + core::fmt::Debug,
{
    /// Verifies that `signature` is a valid signature of `message` using `self`
    /// as the public key. `params` determine what algorithm parameters
    /// (padding, digest algorithm, key length range, etc.) are used in the
    /// verification.
    pub fn verify(
        &self,
        params: &RsaParameters,
        message: &[u8],
        signature: &[u8],
    ) -> Result<(), error::Unspecified> {
        let _ = cpu::features();
        verify_rsa_(
            params,
            (
                untrusted::Input::from(self.n.as_ref()),
                untrusted::Input::from(self.e.as_ref()),
            ),
            untrusted::Input::from(message),
            untrusted::Input::from(signature),
        )
    }
}

pub(crate) fn verify_rsa_(
    params: &RsaParameters,
    (n, e): (untrusted::Input, untrusted::Input),
    msg: untrusted::Input,
    signature: untrusted::Input,
) -> Result<(), error::Unspecified> {
    let max_bits = bits::BitLength::from_usize_bytes(PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN)?;

    // XXX: FIPS 186-4 seems to indicate that the minimum
    // exponent value is 2**16 + 1, but it isn't clear if this is just for
    // signing or also for verification. We support exponents of 3 and larger
    // for compatibility with other commonly-used crypto libraries.
    let Key { n, e, n_bits } = Key::from_modulus_and_exponent(n, e, params.min_bits, max_bits, 3)?;

    // The signature must be the same length as the modulus, in bytes.
    if signature.len() != n_bits.as_usize_bytes_rounded_up() {
        return Err(error::Unspecified);
    }

    // RFC 8017 Section 5.2.2: RSAVP1.

    // Step 1.
    let s = bigint::Elem::from_be_bytes_padded(signature, &n)?;
    if s.is_zero() {
        return Err(error::Unspecified);
    }

    // Step 2.
    let m = bigint::elem_exp_vartime(s, e, &n);
    let m = m.into_unencoded(&n);

    // Step 3.
    let mut decoded = [0u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN];
    let decoded = fill_be_bytes_n(m, n_bits, &mut decoded);

    // Verify the padded message is correct.
    let m_hash = digest::digest(params.padding_alg.digest_alg(), msg.as_slice_less_safe());
    untrusted::Input::from(decoded).read_all(error::Unspecified, |m| {
        params.padding_alg.verify(&m_hash, m, n_bits)
    })
}

/// Returns the big-endian representation of `elem` that is
/// the same length as the minimal-length big-endian representation of
/// the modulus `n`.
///
/// `n_bits` must be the bit length of the public modulus `n`.
fn fill_be_bytes_n(
    elem: bigint::Elem<N, Unencoded>,
    n_bits: bits::BitLength,
    out: &mut [u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN],
) -> &[u8] {
    let n_bytes = n_bits.as_usize_bytes_rounded_up();
    let n_bytes_padded = ((n_bytes + (LIMB_BYTES - 1)) / LIMB_BYTES) * LIMB_BYTES;
    let out = &mut out[..n_bytes_padded];
    elem.fill_be_bytes(out);
    let (padding, out) = out.split_at(n_bytes_padded - n_bytes);
    assert!(padding.iter().all(|&b| b == 0));
    out
}