1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
use crate::session::Session;
use std::io::{IoSlice, Read, Result, Write};

/// This type implements `io::Read` and `io::Write`, encapsulating
/// a Session `S` and an underlying transport `T`, such as a socket.
///
/// This allows you to use a rustls Session like a normal stream.
pub struct Stream<'a, S: 'a + Session + ?Sized, T: 'a + Read + Write + ?Sized> {
    /// Our session
    pub sess: &'a mut S,

    /// The underlying transport, like a socket
    pub sock: &'a mut T,
}

impl<'a, S, T> Stream<'a, S, T>
where
    S: 'a + Session,
    T: 'a + Read + Write,
{
    /// Make a new Stream using the Session `sess` and socket-like object
    /// `sock`.  This does not fail and does no IO.
    pub fn new(sess: &'a mut S, sock: &'a mut T) -> Stream<'a, S, T> {
        Stream { sess, sock }
    }

    /// If we're handshaking, complete all the IO for that.
    /// If we have data to write, write it all.
    fn complete_prior_io(&mut self) -> Result<()> {
        if self.sess.is_handshaking() {
            self.sess.complete_io(self.sock)?;
        }

        if self.sess.wants_write() {
            self.sess.complete_io(self.sock)?;
        }

        Ok(())
    }
}

impl<'a, S, T> Read for Stream<'a, S, T>
where
    S: 'a + Session,
    T: 'a + Read + Write,
{
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        self.complete_prior_io()?;

        // We call complete_io() in a loop since a single call may read only
        // a partial packet from the underlying transport. A full packet is
        // needed to get more plaintext, which we must do if EOF has not been
        // hit. Otherwise, we will prematurely signal EOF by returning 0. We
        // determine if EOF has actually been hit by checking if 0 bytes were
        // read from the underlying transport.
        while self.sess.wants_read() && self.sess.complete_io(self.sock)?.0 != 0 {}

        self.sess.read(buf)
    }
}

impl<'a, S, T> Write for Stream<'a, S, T>
where
    S: 'a + Session,
    T: 'a + Read + Write,
{
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        self.complete_prior_io()?;

        let len = self.sess.write(buf)?;

        // Try to write the underlying transport here, but don't let
        // any errors mask the fact we've consumed `len` bytes.
        // Callers will learn of permanent errors on the next call.
        let _ = self.sess.complete_io(self.sock);

        Ok(len)
    }

    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
        self.complete_prior_io()?;

        let len = self.sess.write_vectored(bufs)?;

        // Try to write the underlying transport here, but don't let
        // any errors mask the fact we've consumed `len` bytes.
        // Callers will learn of permanent errors on the next call.
        let _ = self.sess.complete_io(self.sock);

        Ok(len)
    }

    fn flush(&mut self) -> Result<()> {
        self.complete_prior_io()?;

        self.sess.flush()?;
        if self.sess.wants_write() {
            self.sess.complete_io(self.sock)?;
        }
        Ok(())
    }
}

/// This type implements `io::Read` and `io::Write`, encapsulating
/// and owning a Session `S` and an underlying blocking transport
/// `T`, such as a socket.
///
/// This allows you to use a rustls Session like a normal stream.
pub struct StreamOwned<S: Session + Sized, T: Read + Write + Sized> {
    /// Our session
    pub sess: S,

    /// The underlying transport, like a socket
    pub sock: T,
}

impl<S, T> StreamOwned<S, T>
where
    S: Session,
    T: Read + Write,
{
    /// Make a new StreamOwned taking the Session `sess` and socket-like
    /// object `sock`.  This does not fail and does no IO.
    ///
    /// This is the same as `Stream::new` except `sess` and `sock` are
    /// moved into the StreamOwned.
    pub fn new(sess: S, sock: T) -> StreamOwned<S, T> {
        StreamOwned { sess, sock }
    }

    /// Get a reference to the underlying socket
    pub fn get_ref(&self) -> &T {
        &self.sock
    }

    /// Get a mutable reference to the underlying socket
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.sock
    }
}

impl<'a, S, T> StreamOwned<S, T>
where
    S: Session,
    T: Read + Write,
{
    fn as_stream(&'a mut self) -> Stream<'a, S, T> {
        Stream {
            sess: &mut self.sess,
            sock: &mut self.sock,
        }
    }
}

impl<S, T> Read for StreamOwned<S, T>
where
    S: Session,
    T: Read + Write,
{
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        self.as_stream().read(buf)
    }
}

impl<S, T> Write for StreamOwned<S, T>
where
    S: Session,
    T: Read + Write,
{
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        self.as_stream().write(buf)
    }

    fn flush(&mut self) -> Result<()> {
        self.as_stream().flush()
    }
}

#[cfg(test)]
mod tests {
    use super::{Stream, StreamOwned};
    use crate::client::ClientSession;
    use crate::server::ServerSession;
    use crate::session::Session;
    use std::net::TcpStream;

    #[test]
    fn stream_can_be_created_for_session_and_tcpstream() {
        type _Test<'a> = Stream<'a, dyn Session, TcpStream>;
    }

    #[test]
    fn streamowned_can_be_created_for_client_and_tcpstream() {
        type _Test = StreamOwned<ClientSession, TcpStream>;
    }

    #[test]
    fn streamowned_can_be_created_for_server_and_tcpstream() {
        type _Test = StreamOwned<ServerSession, TcpStream>;
    }
}