1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
use crate::io::driver::{Handle, Interest, Registration};

use mio::event::Source;
use std::fmt;
use std::io;
use std::ops::Deref;

cfg_io_driver! {
    /// Associates an I/O resource that implements the [`std::io::Read`] and/or
    /// [`std::io::Write`] traits with the reactor that drives it.
    ///
    /// `PollEvented` uses [`Registration`] internally to take a type that
    /// implements [`mio::event::Source`] as well as [`std::io::Read`] and or
    /// [`std::io::Write`] and associate it with a reactor that will drive it.
    ///
    /// Once the [`mio::event::Source`] type is wrapped by `PollEvented`, it can be
    /// used from within the future's execution model. As such, the
    /// `PollEvented` type provides [`AsyncRead`] and [`AsyncWrite`]
    /// implementations using the underlying I/O resource as well as readiness
    /// events provided by the reactor.
    ///
    /// **Note**: While `PollEvented` is `Sync` (if the underlying I/O type is
    /// `Sync`), the caller must ensure that there are at most two tasks that
    /// use a `PollEvented` instance concurrently. One for reading and one for
    /// writing. While violating this requirement is "safe" from a Rust memory
    /// model point of view, it will result in unexpected behavior in the form
    /// of lost notifications and tasks hanging.
    ///
    /// ## Readiness events
    ///
    /// Besides just providing [`AsyncRead`] and [`AsyncWrite`] implementations,
    /// this type also supports access to the underlying readiness event stream.
    /// While similar in function to what [`Registration`] provides, the
    /// semantics are a bit different.
    ///
    /// Two functions are provided to access the readiness events:
    /// [`poll_read_ready`] and [`poll_write_ready`]. These functions return the
    /// current readiness state of the `PollEvented` instance. If
    /// [`poll_read_ready`] indicates read readiness, immediately calling
    /// [`poll_read_ready`] again will also indicate read readiness.
    ///
    /// When the operation is attempted and is unable to succeed due to the I/O
    /// resource not being ready, the caller must call `clear_readiness`.
    /// This clears the readiness state until a new readiness event is received.
    ///
    /// This allows the caller to implement additional functions. For example,
    /// [`TcpListener`] implements poll_accept by using [`poll_read_ready`] and
    /// `clear_read_ready`.
    ///
    /// ## Platform-specific events
    ///
    /// `PollEvented` also allows receiving platform-specific `mio::Ready` events.
    /// These events are included as part of the read readiness event stream. The
    /// write readiness event stream is only for `Ready::writable()` events.
    ///
    /// [`AsyncRead`]: crate::io::AsyncRead
    /// [`AsyncWrite`]: crate::io::AsyncWrite
    /// [`TcpListener`]: crate::net::TcpListener
    /// [`poll_read_ready`]: Registration::poll_read_ready
    /// [`poll_write_ready`]: Registration::poll_write_ready
    pub(crate) struct PollEvented<E: Source> {
        io: Option<E>,
        registration: Registration,
    }
}

// ===== impl PollEvented =====

impl<E: Source> PollEvented<E> {
    /// Creates a new `PollEvented` associated with the default reactor.
    ///
    /// # Panics
    ///
    /// This function panics if thread-local runtime is not set.
    ///
    /// The runtime is usually set implicitly when this function is called
    /// from a future driven by a tokio runtime, otherwise runtime can be set
    /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
    #[cfg_attr(feature = "signal", allow(unused))]
    pub(crate) fn new(io: E) -> io::Result<Self> {
        PollEvented::new_with_interest(io, Interest::READABLE | Interest::WRITABLE)
    }

    /// Creates a new `PollEvented` associated with the default reactor, for
    /// specific `Interest` state. `new_with_interest` should be used over `new`
    /// when you need control over the readiness state, such as when a file
    /// descriptor only allows reads. This does not add `hup` or `error` so if
    /// you are interested in those states, you will need to add them to the
    /// readiness state passed to this function.
    ///
    /// # Panics
    ///
    /// This function panics if thread-local runtime is not set.
    ///
    /// The runtime is usually set implicitly when this function is called from
    /// a future driven by a tokio runtime, otherwise runtime can be set
    /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter)
    /// function.
    #[cfg_attr(feature = "signal", allow(unused))]
    pub(crate) fn new_with_interest(io: E, interest: Interest) -> io::Result<Self> {
        Self::new_with_interest_and_handle(io, interest, Handle::current())
    }

    pub(crate) fn new_with_interest_and_handle(
        mut io: E,
        interest: Interest,
        handle: Handle,
    ) -> io::Result<Self> {
        let registration = Registration::new_with_interest_and_handle(&mut io, interest, handle)?;
        Ok(Self {
            io: Some(io),
            registration,
        })
    }

    /// Returns a reference to the registration
    #[cfg(any(
        feature = "net",
        all(unix, feature = "process"),
        all(unix, feature = "signal"),
    ))]
    pub(crate) fn registration(&self) -> &Registration {
        &self.registration
    }

    /// Deregister the inner io from the registration and returns a Result containing the inner io
    #[cfg(any(feature = "net", feature = "process"))]
    pub(crate) fn into_inner(mut self) -> io::Result<E> {
        let mut inner = self.io.take().unwrap(); // As io shouldn't ever be None, just unwrap here.
        self.registration.deregister(&mut inner)?;
        Ok(inner)
    }
}

feature! {
    #![any(feature = "net", feature = "process")]

    use crate::io::ReadBuf;
    use std::task::{Context, Poll};

    impl<E: Source> PollEvented<E> {
        // Safety: The caller must ensure that `E` can read into uninitialized memory
        pub(crate) unsafe fn poll_read<'a>(
            &'a self,
            cx: &mut Context<'_>,
            buf: &mut ReadBuf<'_>,
        ) -> Poll<io::Result<()>>
        where
            &'a E: io::Read + 'a,
        {
            use std::io::Read;

            let n = ready!(self.registration.poll_read_io(cx, || {
                let b = &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]);
                self.io.as_ref().unwrap().read(b)
            }))?;

            // Safety: We trust `TcpStream::read` to have filled up `n` bytes in the
            // buffer.
            buf.assume_init(n);
            buf.advance(n);
            Poll::Ready(Ok(()))
        }

        pub(crate) fn poll_write<'a>(&'a self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>>
        where
            &'a E: io::Write + 'a,
        {
            use std::io::Write;
            self.registration.poll_write_io(cx, || self.io.as_ref().unwrap().write(buf))
        }

        #[cfg(feature = "net")]
        pub(crate) fn poll_write_vectored<'a>(
            &'a self,
            cx: &mut Context<'_>,
            bufs: &[io::IoSlice<'_>],
        ) -> Poll<io::Result<usize>>
        where
            &'a E: io::Write + 'a,
        {
            use std::io::Write;
            self.registration.poll_write_io(cx, || self.io.as_ref().unwrap().write_vectored(bufs))
        }
    }
}

impl<E: Source> Deref for PollEvented<E> {
    type Target = E;

    fn deref(&self) -> &E {
        self.io.as_ref().unwrap()
    }
}

impl<E: Source + fmt::Debug> fmt::Debug for PollEvented<E> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("PollEvented").field("io", &self.io).finish()
    }
}

impl<E: Source> Drop for PollEvented<E> {
    fn drop(&mut self) {
        if let Some(mut io) = self.io.take() {
            // Ignore errors
            let _ = self.registration.deregister(&mut io);
        }
    }
}