1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// Copyright 2015-2018 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use std::io;
use std::marker::PhantomData;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr};
use std::pin::Pin;
use std::task::{Context, Poll};

use async_trait::async_trait;
use futures::channel::mpsc::{unbounded, UnboundedReceiver};
use futures::stream::{Fuse, Peekable, Stream, StreamExt};
use futures::{ready, Future, FutureExt, TryFutureExt};
use log::debug;
use rand;
use rand::distributions::{uniform::Uniform, Distribution};

use crate::xfer::{BufStreamHandle, SerialMessage};

/// Trait for UdpSocket
#[async_trait]
pub trait UdpSocket
where
    Self: Sized + Unpin,
{
    /// UdpSocket
    async fn bind(addr: &SocketAddr) -> io::Result<Self>;
    /// Receive data from the socket and returns the number of bytes read and the address from
    /// where the data came on success.
    async fn recv_from(&mut self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)>;
    /// Send data to the given address.
    async fn send_to(&mut self, buf: &[u8], target: &SocketAddr) -> io::Result<usize>;
}

/// A UDP stream of DNS binary packets
#[must_use = "futures do nothing unless polled"]
pub struct UdpStream<S: Send> {
    socket: S,
    outbound_messages: Peekable<Fuse<UnboundedReceiver<SerialMessage>>>,
}

impl<S: UdpSocket + Send + 'static> UdpStream<S> {
    /// This method is intended for client connections, see `with_bound` for a method better for
    ///  straight listening. It is expected that the resolver wrapper will be responsible for
    ///  creating and managing new UdpStreams such that each new client would have a random port
    ///  (reduce chance of cache poisoning). This will return a randomly assigned local port.
    ///
    /// # Arguments
    ///
    /// * `name_server` - socket address for the remote server (used to determine IPv4 or IPv6)
    ///
    /// # Return
    ///
    /// a tuple of a Future Stream which will handle sending and receiving messages, and a
    ///  handle which can be used to send messages into the stream.
    #[allow(clippy::type_complexity)]
    pub fn new(
        name_server: SocketAddr,
    ) -> (
        Box<dyn Future<Output = Result<UdpStream<S>, io::Error>> + Send + Unpin>,
        BufStreamHandle,
    ) {
        let (message_sender, outbound_messages) = unbounded();
        let message_sender = BufStreamHandle::new(message_sender);

        // TODO: allow the bind address to be specified...
        // constructs a future for getting the next randomly bound port to a UdpSocket
        let next_socket = NextRandomUdpSocket::new(&name_server);

        // This set of futures collapses the next udp socket into a stream which can be used for
        //  sending and receiving udp packets.
        let stream = Box::new(next_socket.map_ok(move |socket| UdpStream {
            socket,
            outbound_messages: outbound_messages.fuse().peekable(),
        }));

        (stream, message_sender)
    }

    /// Initialize the Stream with an already bound socket. Generally this should be only used for
    ///  server listening sockets. See `new` for a client oriented socket. Specifically, this there
    ///  is already a bound socket in this context, whereas `new` makes sure to randomize ports
    ///  for additional cache poison prevention.
    ///
    /// # Arguments
    ///
    /// * `socket` - an already bound UDP socket
    ///
    /// # Return
    ///
    /// a tuple of a Future Stream which will handle sending and receiving messsages, and a
    ///  handle which can be used to send messages into the stream.
    pub fn with_bound(socket: S) -> (Self, BufStreamHandle) {
        let (message_sender, outbound_messages) = unbounded();
        let message_sender = BufStreamHandle::new(message_sender);

        let stream = UdpStream {
            socket,
            outbound_messages: outbound_messages.fuse().peekable(),
        };

        (stream, message_sender)
    }

    #[allow(unused)]
    pub(crate) fn from_parts(
        socket: S,
        outbound_messages: UnboundedReceiver<SerialMessage>,
    ) -> Self {
        UdpStream {
            socket,
            outbound_messages: outbound_messages.fuse().peekable(),
        }
    }
}

impl<S: Send> UdpStream<S> {
    #[allow(clippy::type_complexity)]
    fn pollable_split(
        &mut self,
    ) -> (
        &mut S,
        &mut Peekable<Fuse<UnboundedReceiver<SerialMessage>>>,
    ) {
        (&mut self.socket, &mut self.outbound_messages)
    }
}

impl<S: UdpSocket + Send + 'static> Stream for UdpStream<S> {
    type Item = Result<SerialMessage, io::Error>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<Self::Item>> {
        let (socket, outbound_messages) = self.pollable_split();
        let mut socket = Pin::new(socket);
        let mut outbound_messages = Pin::new(outbound_messages);

        // this will not accept incoming data while there is data to send
        //  makes this self throttling.
        while let Poll::Ready(Some(message)) = outbound_messages.as_mut().poll_peek(cx) {
            // first try to send
            let addr = &message.addr();

            // this wiil return if not ready,
            //   meaning that sending will be prefered over receiving...

            // TODO: shouldn't this return the error to send to the sender?
            ready!(socket.send_to(message.bytes(), addr).poll_unpin(cx))?;

            // message sent, need to pop the message
            assert!(outbound_messages.as_mut().poll_next(cx).is_ready());
        }

        // For QoS, this will only accept one message and output that
        // receive all inbound messages

        // TODO: this should match edns settings
        let mut buf = [0u8; 2048];
        let (len, src) = ready!(socket.recv_from(&mut buf).poll_unpin(cx))?;

        Poll::Ready(Some(Ok(SerialMessage::new(
            buf.iter().take(len).cloned().collect(),
            src,
        ))))
    }
}

#[must_use = "futures do nothing unless polled"]
pub(crate) struct NextRandomUdpSocket<S> {
    bind_address: IpAddr,
    marker: PhantomData<S>,
}

impl<S: UdpSocket> NextRandomUdpSocket<S> {
    /// Creates a future for randomly binding to a local socket address for client connections.
    pub(crate) fn new(name_server: &SocketAddr) -> NextRandomUdpSocket<S> {
        let zero_addr: IpAddr = match *name_server {
            SocketAddr::V4(..) => IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)),
            SocketAddr::V6(..) => IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)),
        };

        NextRandomUdpSocket {
            bind_address: zero_addr,
            marker: PhantomData,
        }
    }

    async fn bind(zero_addr: SocketAddr) -> Result<S, io::Error> {
        S::bind(&zero_addr).await
    }
}

impl<S: UdpSocket> Future for NextRandomUdpSocket<S> {
    type Output = Result<S, io::Error>;

    /// polls until there is an available next random UDP port.
    ///
    /// if there is no port available after 10 attempts, returns NotReady
    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        let rand_port_range = Uniform::new_inclusive(1025_u16, u16::max_value());
        let mut rand = rand::thread_rng();

        for attempt in 0..10 {
            let port = rand_port_range.sample(&mut rand); // the range is [0 ... u16::max]
            let zero_addr = SocketAddr::new(self.bind_address, port);

            // TODO: allow TTL to be adjusted...
            // TODO: this immediate poll might be wrong in some cases...
            match Box::pin(Self::bind(zero_addr)).as_mut().poll(cx) {
                Poll::Ready(Ok(socket)) => {
                    debug!("created socket successfully");
                    return Poll::Ready(Ok(socket));
                }
                Poll::Ready(Err(err)) => {
                    debug!("unable to bind port, attempt: {}: {}", attempt, err)
                }
                Poll::Pending => debug!("unable to bind port, attempt: {}", attempt),
            }
        }

        debug!("could not get next random port, delaying");

        // TODO: because no interest is registered anywhere, we must awake.
        cx.waker().wake_by_ref();

        // returning NotReady here, perhaps the next poll there will be some more socket available.
        Poll::Pending
    }
}

#[cfg(feature = "tokio-runtime")]
#[async_trait]
impl UdpSocket for tokio::net::UdpSocket {
    async fn bind(addr: &SocketAddr) -> io::Result<Self> {
        tokio::net::UdpSocket::bind(addr).await
    }

    async fn recv_from(&mut self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
        self.recv_from(buf).await
    }

    async fn send_to(&mut self, buf: &[u8], target: &SocketAddr) -> io::Result<usize> {
        self.send_to(buf, target).await
    }
}

#[cfg(test)]
#[cfg(feature = "tokio-runtime")]
mod tests {
    #[cfg(not(target_os = "linux"))] // ignored until Travis-CI fixes IPv6
    use std::net::Ipv6Addr;
    use std::net::{IpAddr, Ipv4Addr};
    use tokio::{net::UdpSocket as TokioUdpSocket, runtime::Runtime};

    #[test]
    fn test_next_random_socket() {
        use crate::tests::next_random_socket_test;
        let io_loop = Runtime::new().expect("failed to create tokio runtime");
        next_random_socket_test::<TokioUdpSocket, Runtime>(io_loop)
    }

    #[test]
    fn test_udp_stream_ipv4() {
        use crate::tests::udp_stream_test;
        let io_loop = Runtime::new().expect("failed to create tokio runtime");
        udp_stream_test::<TokioUdpSocket, Runtime>(
            IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
            io_loop,
        );
    }

    #[test]
    #[cfg(not(target_os = "linux"))] // ignored until Travis-CI fixes IPv6
    fn test_udp_stream_ipv6() {
        use crate::tests::udp_stream_test;
        let io_loop = Runtime::new().expect("failed to create tokio runtime");
        udp_stream_test::<TokioUdpSocket, Runtime>(
            IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
            io_loop,
        );
    }
}